Distributed Consensus Optimization

Ming Yan
Michigan State University, CMSE/Mathematics

September 14, 2018

MICHIGAN STATE
 U N I V E R S I T Y

why we need decentralized optimization?

Decentralized vehicles/aircrafts coordination ${ }^{1}$

Flock of birds

Aircrafts formation

- Average consensus problem

$$
\min _{\left\{x_{(i)}\right\}}\left\|x_{(1)}-b_{1}\right\|_{2}^{2}+\cdots+\left\|x_{(n)}-b_{n}\right\|_{2}^{2}
$$

s.t. $\quad x_{(1)}=\cdots=x_{(n)}$

[^0]
why we need decentralized optimization?

Decentralized state estimation of smart grid ${ }^{2}$

- Least squares (Gaussian noise) $+\ell_{1}$ norm (sparse anomalies)

$$
\begin{array}{cl}
\min _{\left\{x_{(i)} \in \mathcal{X}_{i}, v_{(i)}\right\}} & \sum_{i=1}^{n} f_{i}\left(x_{(i)}, v_{(i)}\right) \\
\text { s.t. } & x_{(h)}[j]=x_{(j)}[h], \forall j \in \mathcal{N}_{h}, \forall h
\end{array}
$$

where $f_{i}\left(x_{(i)}, v_{(i)}\right)=$ $\left\|z_{i}-H_{i} x_{(i)}-v_{(i)}\right\|_{2}^{2}+\lambda\left\|v_{(i)}\right\|_{1}$, and the model parameter λ can be obtained through cross validation

[^1]
why we need decentralized optimization?

Decentralized dictionary learning ${ }^{3}$

[^2]
why we need decentralized optimization?

Decentralized data/signal processing ${ }^{4}$

- cost/risk minimization: $\min \bar{f}(x)=\frac{1}{n} \sum_{i=1}^{n} f_{i}(x)$

- Communication and computation balance, robust
- Privacy preservation: Exchange f_{i} ? No! Exchange $x_{(i)}^{k}$
- Unmanned vehicles coordination, in-vehicle networking
- Smart grid management, power station management
- Decentralized recommender systems, multi-group cooperation
- Decentralized network utility maximization
- Decentralized resource allocation
-

[^3]
what is decentralized optimization?

Decentralized consensus optimization

$$
\begin{equation*}
x^{*}=\arg \min _{x \in \mathcal{C} \subseteq \mathbb{R}^{p}} \bar{f}(x)=\frac{1}{n} \sum_{i=1}^{n} f_{i}(x) \tag{1}
\end{equation*}
$$

- Compared to centralized system: robustness, computation balanced, computation balanced, privacy preserving
- Related topics: in-vehicle networking, internet of things, cloud computing, big data
simplest decentralized consensus problem: averaging

decentralized averaging

One iteration:

$$
\mathbf{x}^{k+1}=\mathbf{W} \mathbf{x}^{k}
$$

where $\mathbf{x}=\left[x_{1}, \ldots, x_{n}\right]^{\top}$.

decentralized averaging

One iteration:

$$
\mathbf{x}^{k+1}=\mathbf{W} \mathbf{x}^{k}
$$

where $\mathbf{x}=\left[x_{1}, \ldots, x_{n}\right]^{\top}$.

- W encodes the network; nonzero entries correspond to edges; we assume that \mathbf{W} is symmetric (for undirected networks).

$$
\mathbf{W}=\left[\begin{array}{cccc}
1 / 4 & 1 / 4 & 1 / 4 & 1 / 4 \\
1 / 4 & 1 / 4 & 1 / 4 & 1 / 4 \\
1 / 4 & 1 / 4 & 1 / 4 & 1 / 4 \\
1 / 4 & 1 / 4 & 1 / 4 & 1 / 4
\end{array}\right], \quad \mathbf{W}=\left[\begin{array}{cccc}
2 / 3 & 1 / 3 & 0 & 0 \\
1 / 3 & 1 / 3 & 1 / 3 & 0 \\
0 & 1 / 3 & 1 / 3 & 1 / 3 \\
0 & 0 & 1 / 3 & 2 / 3
\end{array}\right]
$$

decentralized averaging

One iteration:

$$
\mathbf{x}^{k+1}=\mathbf{W} \mathbf{x}^{k}
$$

where $\mathbf{x}=\left[x_{1}, \ldots, x_{n}\right]^{\top}$.

- W encodes the network; nonzero entries correspond to edges; we assume that \mathbf{W} is symmetric (for undirected networks).

$$
\mathbf{W}=\left[\begin{array}{cccc}
1 / 4 & 1 / 4 & 1 / 4 & 1 / 4 \\
1 / 4 & 1 / 4 & 1 / 4 & 1 / 4 \\
1 / 4 & 1 / 4 & 1 / 4 & 1 / 4 \\
1 / 4 & 1 / 4 & 1 / 4 & 1 / 4
\end{array}\right], \quad \mathbf{W}=\left[\begin{array}{cccc}
2 / 3 & 1 / 3 & 0 & 0 \\
1 / 3 & 1 / 3 & 1 / 3 & 0 \\
0 & 1 / 3 & 1 / 3 & 1 / 3 \\
0 & 0 & 1 / 3 & 2 / 3
\end{array}\right]
$$

- $\mathbf{1}_{n \times 1}$ is a fixed point, i.e., \mathbf{W} has an eigenvalue 1 ; row/column sum equals one.

decentralized averaging

One iteration:

$$
\mathbf{x}^{k+1}=\mathbf{W} \mathbf{x}^{k}
$$

where $\mathbf{x}=\left[x_{1}, \ldots, x_{n}\right]^{\top}$.

- W encodes the network; nonzero entries correspond to edges; we assume that \mathbf{W} is symmetric (for undirected networks).

$$
\mathbf{W}=\left[\begin{array}{cccc}
1 / 4 & 1 / 4 & 1 / 4 & 1 / 4 \\
1 / 4 & 1 / 4 & 1 / 4 & 1 / 4 \\
1 / 4 & 1 / 4 & 1 / 4 & 1 / 4 \\
1 / 4 & 1 / 4 & 1 / 4 & 1 / 4
\end{array}\right], \quad \mathbf{W}=\left[\begin{array}{cccc}
2 / 3 & 1 / 3 & 0 & 0 \\
1 / 3 & 1 / 3 & 1 / 3 & 0 \\
0 & 1 / 3 & 1 / 3 & 1 / 3 \\
0 & 0 & 1 / 3 & 2 / 3
\end{array}\right]
$$

- $\mathbf{1}_{n \times 1}$ is a fixed point, i.e., \mathbf{W} has an eigenvalue 1 ; row/column sum equals one.
- Any fixed point is consensus, i.e., $\mathbf{x}^{*}=c \mathbf{1}_{n \times 1}$.

decentralized averaging

One iteration:

$$
\mathbf{x}^{k+1}=\mathbf{W} \mathbf{x}^{k}
$$

where $\mathbf{x}=\left[x_{1}, \ldots, x_{n}\right]^{\top}$.

- W encodes the network; nonzero entries correspond to edges; we assume that \mathbf{W} is symmetric (for undirected networks).

$$
\mathbf{W}=\left[\begin{array}{cccc}
1 / 4 & 1 / 4 & 1 / 4 & 1 / 4 \\
1 / 4 & 1 / 4 & 1 / 4 & 1 / 4 \\
1 / 4 & 1 / 4 & 1 / 4 & 1 / 4 \\
1 / 4 & 1 / 4 & 1 / 4 & 1 / 4
\end{array}\right], \quad \mathbf{W}=\left[\begin{array}{cccc}
2 / 3 & 1 / 3 & 0 & 0 \\
1 / 3 & 1 / 3 & 1 / 3 & 0 \\
0 & 1 / 3 & 1 / 3 & 1 / 3 \\
0 & 0 & 1 / 3 & 2 / 3
\end{array}\right]
$$

- $\mathbf{1}_{n \times 1}$ is a fixed point, i.e., \mathbf{W} has an eigenvalue 1 ; row/column sum equals one.
- Any fixed point is consensus, i.e., $\mathbf{x}^{*}=c \mathbf{1}_{n \times 1}$.
- \mathbf{W} has all other eigenvalues in $(-1,1)$.

decentralized averaging

One iteration:

$$
\mathbf{x}^{k+1}=\mathbf{W} \mathbf{x}^{k}
$$

where $\mathbf{x}=\left[x_{1}, \ldots, x_{n}\right]^{\top}$.

- W encodes the network; nonzero entries correspond to edges; we assume that \mathbf{W} is symmetric (for undirected networks).

$$
\mathbf{W}=\left[\begin{array}{cccc}
1 / 4 & 1 / 4 & 1 / 4 & 1 / 4 \\
1 / 4 & 1 / 4 & 1 / 4 & 1 / 4 \\
1 / 4 & 1 / 4 & 1 / 4 & 1 / 4 \\
1 / 4 & 1 / 4 & 1 / 4 & 1 / 4
\end{array}\right], \quad \mathbf{W}=\left[\begin{array}{cccc}
2 / 3 & 1 / 3 & 0 & 0 \\
1 / 3 & 1 / 3 & 1 / 3 & 0 \\
0 & 1 / 3 & 1 / 3 & 1 / 3 \\
0 & 0 & 1 / 3 & 2 / 3
\end{array}\right]
$$

- $\mathbf{1}_{n \times 1}$ is a fixed point, i.e., \mathbf{W} has an eigenvalue 1 ; row/column sum equals one.
- Any fixed point is consensus, i.e., $\mathbf{x}^{*}=c \mathbf{1}_{n \times 1}$.
- \mathbf{W} has all other eigenvalues in $(-1,1)$.
- $\mathbf{1}^{\top} \mathbf{x}^{k+1}=\mathbf{1}^{\top} \mathbf{W} \mathbf{x}^{k}=\mathbf{1}^{\top} \mathbf{x}^{k}$; the sum is fixed during the iteration.

decentralized averaging

One iteration:

$$
\mathbf{x}^{k+1}=\mathbf{W} \mathbf{x}^{k}
$$

where $\mathbf{x}=\left[x_{1}, \ldots, x_{n}\right]^{\top}$.

- W encodes the network; nonzero entries correspond to edges; we assume that \mathbf{W} is symmetric (for undirected networks).

$$
\mathbf{W}=\left[\begin{array}{cccc}
1 / 4 & 1 / 4 & 1 / 4 & 1 / 4 \\
1 / 4 & 1 / 4 & 1 / 4 & 1 / 4 \\
1 / 4 & 1 / 4 & 1 / 4 & 1 / 4 \\
1 / 4 & 1 / 4 & 1 / 4 & 1 / 4
\end{array}\right], \quad \mathbf{W}=\left[\begin{array}{cccc}
2 / 3 & 1 / 3 & 0 & 0 \\
1 / 3 & 1 / 3 & 1 / 3 & 0 \\
0 & 1 / 3 & 1 / 3 & 1 / 3 \\
0 & 0 & 1 / 3 & 2 / 3
\end{array}\right]
$$

- $\mathbf{1}_{n \times 1}$ is a fixed point, i.e., \mathbf{W} has an eigenvalue 1 ; row/column sum equals one.
- Any fixed point is consensus, i.e., $\mathbf{x}^{*}=c \mathbf{1}_{n \times 1}$.
- \mathbf{W} has all other eigenvalues in $(-1,1)$.
- $\mathbf{1}^{\top} \mathbf{x}^{k+1}=\mathbf{1}^{\top} \mathbf{W} \mathbf{x}^{k}=\mathbf{1}^{\top} \mathbf{x}^{k}$; the sum is fixed during the iteration.
- Convergence speed depends on the second largest eigenvalue of \mathbf{W} in absolute value.

decentralized averaging as gradient descent

Decentralized averaging:

$$
\mathbf{x}^{k+1}=\mathbf{W} \mathbf{x}^{k}
$$

decentralized averaging as gradient descent

Decentralized averaging:

$$
\mathbf{x}^{k+1}=\mathbf{W} \mathbf{x}^{k}
$$

Rewrite the iteration as:

$$
\mathbf{x}^{k+1}=\mathbf{W} \mathbf{x}^{k}=\mathbf{x}^{k}-(\mathbf{I}-\mathbf{W}) \mathbf{x}^{k}
$$

decentralized averaging as gradient descent

Decentralized averaging:

$$
\mathbf{x}^{k+1}=\mathbf{W} \mathbf{x}^{k}
$$

Rewrite the iteration as:

$$
\mathbf{x}^{k+1}=\mathbf{W} \mathbf{x}^{k}=\mathbf{x}^{k}-(\mathbf{I}-\mathbf{W}) \mathbf{x}^{k}
$$

It is equivalent to gradient descent with stepsize 1 for

$$
\underset{\mathbf{x}}{\operatorname{minimize}} \frac{1}{2}\|\sqrt{\mathbf{I}-\mathbf{W}} \mathbf{x}\|_{2}^{2}
$$

decentralized averaging as gradient descent

Decentralized averaging:

$$
\mathbf{x}^{k+1}=\mathbf{W} \mathbf{x}^{k}
$$

Rewrite the iteration as:

$$
\mathbf{x}^{k+1}=\mathbf{W} \mathbf{x}^{k}=\mathbf{x}^{k}-(\mathbf{I}-\mathbf{W}) \mathbf{x}^{k}
$$

It is equivalent to gradient descent with stepsize 1 for

$$
\underset{\mathbf{x}}{\operatorname{minimize}} \frac{1}{2}\|\sqrt{\mathbf{I}-\mathbf{W}} \mathbf{x}\|_{2}^{2}
$$

The final solution depends on the initial sum $1^{\top} \mathbf{x}^{0}$.

decentralized averaging as gradient descent

Decentralized averaging:

$$
\mathbf{x}^{k+1}=\mathbf{W} \mathbf{x}^{k}
$$

Rewrite the iteration as:

$$
\mathbf{x}^{k+1}=\mathbf{W} \mathbf{x}^{k}=\mathbf{x}^{k}-(\mathbf{I}-\mathbf{W}) \mathbf{x}^{k}
$$

It is equivalent to gradient descent with stepsize 1 for

$$
\underset{\mathbf{x}}{\operatorname{minimize}} \frac{1}{2}\|\sqrt{\mathbf{I}-\mathbf{W}} \mathbf{x}\|_{2}^{2}
$$

The final solution depends on the initial sum $1^{\top} \mathbf{x}^{0}$.

- The Lipschitz constant of $(\mathbf{I}-\mathbf{W}) \mathbf{x}$ is smaller than 2 , so we can choose stepsize 1.

decentralized gradient descent

Consider problem

$$
\underset{\mathbf{x}}{\operatorname{minimize}} f(\mathbf{x})=\sum_{i=1}^{n} f_{i}\left(x_{i}\right), \quad \text { s.t. } x_{1}=x_{2}=\cdots=x_{n}
$$

decentralized gradient descent

Consider problem

$$
\underset{\mathbf{x}}{\operatorname{minimize}} f(\mathbf{x})=\sum_{i=1}^{n} f_{i}\left(x_{i}\right), \quad \text { s.t. } x_{1}=x_{2}=\cdots=x_{n} .
$$

Decentralized gradient descent (DGD) (Nedic-Ozdaglar '09)

$$
\mathbf{x}^{k+1}=\mathbf{W} \mathbf{x}^{k}-\lambda \nabla f\left(\mathbf{x}^{k}\right)
$$

decentralized gradient descent

Consider problem

$$
\underset{\mathbf{x}}{\operatorname{minimize}} f(\mathbf{x})=\sum_{i=1}^{n} f_{i}\left(x_{i}\right), \quad \text { s.t. } x_{1}=x_{2}=\cdots=x_{n} .
$$

Decentralized gradient descent (DGD) (Nedic-Ozdaglar '09)

$$
\mathbf{x}^{k+1}=\mathbf{W} \mathbf{x}^{k}-\lambda \nabla f\left(\mathbf{x}^{k}\right)
$$

- Rewrite it as

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}-\left((\mathbf{I}-\mathbf{W}) \mathbf{x}^{k}+\lambda \nabla f\left(\mathbf{x}^{k}\right)\right)
$$

DGD is gradient descent with stepsize one of

$$
\underset{\mathbf{x}}{\operatorname{minimize}} \frac{1}{2}\|\sqrt{\mathbf{I}-\mathbf{W}} \mathbf{x}\|_{2}^{2}+\lambda f(\mathbf{x}) .
$$

decentralized gradient descent

Consider problem

$$
\underset{\mathbf{x}}{\operatorname{minimize}} f(\mathbf{x})=\sum_{i=1}^{n} f_{i}\left(x_{i}\right), \quad \text { s.t. } x_{1}=x_{2}=\cdots=x_{n} .
$$

Decentralized gradient descent (DGD) (Nedic-Ozdaglar '09)

$$
\mathbf{x}^{k+1}=\mathbf{W} \mathbf{x}^{k}-\lambda \nabla f\left(\mathbf{x}^{k}\right)
$$

- Rewrite it as

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}-\left((\mathbf{I}-\mathbf{W}) \mathbf{x}^{k}+\lambda \nabla f\left(\mathbf{x}^{k}\right)\right)
$$

DGD is gradient descent with stepsize one of

$$
\underset{\mathbf{x}}{\operatorname{minimize}} \frac{1}{2}\|\sqrt{\mathbf{I}-\mathbf{W}} \mathbf{x}\|_{2}^{2}+\lambda f(\mathbf{x})
$$

- The solution is generally non consensus, i.e., $\mathbf{W} \mathbf{x}^{*}=\mathbf{x}^{*}+\lambda \nabla f\left(\mathbf{x}^{*}\right) \neq \mathbf{x}^{*}$.

decentralized gradient descent

Consider problem

$$
\underset{\mathbf{x}}{\operatorname{minimize}} f(\mathbf{x})=\sum_{i=1}^{n} f_{i}\left(x_{i}\right), \quad \text { s.t. } x_{1}=x_{2}=\cdots=x_{n}
$$

Decentralized gradient descent (DGD) (Nedic-Ozdaglar '09)

$$
\mathbf{x}^{k+1}=\mathbf{W} \mathbf{x}^{k}-\lambda \nabla f\left(\mathbf{x}^{k}\right)
$$

- Rewrite it as

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}-\left((\mathbf{I}-\mathbf{W}) \mathbf{x}^{k}+\lambda \nabla f\left(\mathbf{x}^{k}\right)\right)
$$

DGD is gradient descent with stepsize one of

$$
\underset{\mathbf{x}}{\operatorname{minimize}} \frac{1}{2}\|\sqrt{\mathbf{I}-\mathbf{W}} \mathbf{x}\|_{2}^{2}+\lambda f(\mathbf{x}) .
$$

- The solution is generally non consensus, i.e., $\mathbf{W} \mathbf{x}^{*}=\mathbf{x}^{*}+\lambda \nabla f\left(\mathbf{x}^{*}\right) \neq \mathbf{x}^{*}$.
- Diminishing stepsize, i.e., decreasing λ during the iteration.

constant stepsize?

constant stepsize?

- alternating direction method of multipliers (ADMM) (Shi et al. '14, Chang-Hong-Wang '15, Hong-Chang '17)

constant stepsize?

- alternating direction method of multipliers (ADMM) (Shi et al. '14, Chang-Hong-Wang '15, Hong-Chang '17)
- multi-consensus inner loops (Chen-Ozdaglar '12, Jakovetic-Xavier-Moura '14)

constant stepsize?

- alternating direction method of multipliers (ADMM) (Shi et al. '14, Chang-Hong-Wang '15, Hong-Chang '17)
- multi-consensus inner loops (Chen-Ozdaglar '12, Jakovetic-Xavier-Moura '14)
- EXTRA/PG-EXTRA (Shi et al. '15)

decentralized smooth optimization

Problem:

$$
\underset{\mathbf{x}}{\operatorname{minimize}} f(\mathbf{x}), \quad \text { s.t. } \sqrt{\mathbf{I}-\mathbf{W}} \mathbf{x}=\mathbf{0}
$$

decentralized smooth optimization

Problem:

$$
\underset{\mathbf{x}}{\operatorname{minimize}} f(\mathbf{x}), \quad \text { s.t. } \sqrt{\mathbf{I}-\mathbf{W}} \mathbf{x}=\mathbf{0} .
$$

- Lagrangian function

$$
f(\mathbf{x})+\langle\sqrt{\mathbf{I}-\mathbf{W}} \mathbf{x}, \mathbf{s}\rangle,
$$

where \mathbf{s} is the Lagrangian multiplier.

decentralized smooth optimization

Problem:

$$
\underset{\mathbf{x}}{\operatorname{minimize}} f(\mathbf{x}), \quad \text { s.t. } \sqrt{\mathbf{I}-\mathbf{W}} \mathbf{x}=\mathbf{0} .
$$

- Lagrangian function

$$
f(\mathbf{x})+\langle\sqrt{\mathbf{I}-\mathbf{W}} \mathbf{x}, \mathbf{s}\rangle
$$

where \mathbf{s} is the Lagrangian multiplier.

- Optimality condition (KKT):

$$
\begin{aligned}
& \mathbf{0}=\nabla f\left(\mathbf{x}^{*}\right)+\sqrt{\mathbf{I}-\mathbf{W}} \mathbf{s}^{*} \\
& \mathbf{0}=-\sqrt{\mathbf{I}-\mathbf{W}} \mathbf{x}^{*}
\end{aligned}
$$

decentralized smooth optimization

Problem:

$$
\underset{\mathbf{x}}{\operatorname{minimize}} f(\mathbf{x}), \quad \text { s.t. } \sqrt{\mathbf{I}-\mathbf{W}} \mathbf{x}=\mathbf{0} .
$$

- Lagrangian function

$$
f(\mathbf{x})+\langle\sqrt{\mathbf{I}-\mathbf{W}} \mathbf{x}, \mathbf{s}\rangle
$$

where \mathbf{s} is the Lagrangian multiplier.

- Optimality condition (KKT):

$$
\begin{aligned}
& \mathbf{0}=\nabla f\left(\mathbf{x}^{*}\right)+\sqrt{\mathbf{I}-\mathbf{W}} \mathbf{s}^{*} \\
& \mathbf{0}=-\sqrt{\mathbf{I}-\mathbf{W}} \mathbf{x}^{*}
\end{aligned}
$$

- It is the same as

$$
-\left[\begin{array}{c}
\nabla f\left(\mathbf{x}^{*}\right) \\
\mathbf{0}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{0} & \sqrt{\mathbf{I}-\mathbf{W}} \\
-\sqrt{\mathbf{I}-\mathbf{W}} & \mathbf{0}
\end{array}\right]\left[\begin{array}{l}
\mathbf{x}^{*} \\
\mathbf{s}^{*}
\end{array}\right]
$$

forward-backward

- The KKT system

$$
\begin{aligned}
& -\left[\begin{array}{c}
\nabla f\left(\mathbf{x}^{*}\right) \\
\mathbf{0}
\end{array}\right] \\
= & {\left[\begin{array}{cc}
\mathbf{0} & \sqrt{\mathbf{I}-\mathbf{W}} \\
-\sqrt{\mathbf{I}-\mathbf{W}} & \mathbf{0}
\end{array}\right]\left[\begin{array}{l}
\mathbf{x}^{*} \\
\mathbf{s}^{*}
\end{array}\right] . }
\end{aligned}
$$

forward-backward

- Using forward-backward in the KKT form

$$
\begin{aligned}
& {\left[\begin{array}{cc}
\alpha \mathbf{I} & -\sqrt{\mathbf{I}-\mathbf{W}} \\
-\sqrt{\mathbf{I}-\mathbf{W}} & \beta \mathbf{I}
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}^{k} \\
\mathbf{s}^{k}
\end{array}\right]-\left[\begin{array}{c}
\nabla f\left(\mathbf{x}^{k}\right) \\
\mathbf{0}
\end{array}\right] } \\
= & {\left[\begin{array}{cc}
\alpha \mathbf{I} & -\sqrt{\mathbf{I}-\mathbf{W}} \\
-\sqrt{\mathbf{I}-\mathbf{W}} & \beta \mathbf{I}
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}^{k+1} \\
\mathbf{s}^{k+1}
\end{array}\right]+\left[\begin{array}{cc}
\mathbf{0} & \sqrt{\mathbf{I}-\mathbf{W}} \\
-\sqrt{\mathbf{I}-\mathbf{W}} & \mathbf{0}
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}^{k+1} \\
\mathbf{s}^{k+1}
\end{array}\right] . }
\end{aligned}
$$

forward-backward

- Using forward-backward in the KKT form

$$
\begin{aligned}
& {\left[\begin{array}{cc}
\alpha \mathbf{I} & -\sqrt{\mathbf{I}-\mathbf{W}} \\
-\sqrt{\mathbf{I}-\mathbf{W}} & \beta \mathbf{I}
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}^{k} \\
\mathbf{s}^{k}
\end{array}\right]-\left[\begin{array}{c}
\nabla f\left(\mathbf{x}^{k}\right) \\
\mathbf{0}
\end{array}\right] } \\
= & {\left[\begin{array}{cc}
\alpha \mathbf{I} & -\sqrt{\mathbf{I}-\mathbf{W}} \\
-\sqrt{\mathbf{I}-\mathbf{W}} & \beta \mathbf{I}
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}^{k+1} \\
\mathbf{s}^{k+1}
\end{array}\right]+\left[\begin{array}{cc}
\mathbf{0} & \sqrt{\mathbf{I}-\mathbf{W}} \\
-\sqrt{\mathbf{I}-\mathbf{W}} & \mathbf{0}
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}^{k+1} \\
\mathbf{s}^{k+1}
\end{array}\right] . }
\end{aligned}
$$

- It reduces to

$$
\left[\begin{array}{cc}
\alpha \mathbf{I} & -\sqrt{\mathbf{I}-\mathbf{W}} \\
-\sqrt{\mathbf{I}-\mathbf{W}} & \beta \mathbf{I}
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}^{k} \\
\mathbf{s}^{k}
\end{array}\right]-\left[\begin{array}{c}
\nabla f\left(\mathbf{x}^{k}\right) \\
\mathbf{0}
\end{array}\right]=\left[\begin{array}{cc}
\alpha \mathbf{I} & \mathbf{0} \\
-2 \sqrt{\mathbf{I}-\mathbf{W}} & \beta \mathbf{I}
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}^{k+1} \\
\mathbf{s}^{k+1}
\end{array}\right] .
$$

forward-backward

- Using forward-backward in the KKT form

$$
\begin{aligned}
& {\left[\begin{array}{cc}
\alpha \mathbf{I} & -\sqrt{\mathbf{I}-\mathbf{W}} \\
-\sqrt{\mathbf{I}-\mathbf{W}} & \beta \mathbf{I}
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}^{k} \\
\mathbf{s}^{k}
\end{array}\right]-\left[\begin{array}{c}
\nabla f\left(\mathbf{x}^{k}\right) \\
\mathbf{0}
\end{array}\right] } \\
= & {\left[\begin{array}{cc}
\alpha \mathbf{I} & -\sqrt{\mathbf{I}-\mathbf{W}} \\
-\sqrt{\mathbf{I}-\mathbf{W}} & \beta \mathbf{I}
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}^{k+1} \\
\mathbf{s}^{k+1}
\end{array}\right]+\left[\begin{array}{cc}
\mathbf{0} & \sqrt{\mathbf{I}-\mathbf{W}} \\
-\sqrt{\mathbf{I}-\mathbf{W}} & \mathbf{0}
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}^{k+1} \\
\mathbf{s}^{k+1}
\end{array}\right] . }
\end{aligned}
$$

- It reduces to

$$
\left[\begin{array}{cc}
\alpha \mathbf{I} & -\sqrt{\mathbf{I}-\mathbf{W}} \\
-\sqrt{\mathbf{I}-\mathbf{W}} & \beta \mathbf{I}
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}^{k} \\
\mathbf{s}^{k}
\end{array}\right]-\left[\begin{array}{c}
\nabla f\left(\mathbf{x}^{k}\right) \\
\mathbf{0}
\end{array}\right]=\left[\begin{array}{cc}
\alpha \mathbf{I} & \mathbf{0} \\
-2 \sqrt{\mathbf{I}-\mathbf{W}} & \beta \mathbf{I}
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}^{k+1} \\
\mathbf{s}^{k+1}
\end{array}\right] .
$$

- It is equivalent to

$$
\begin{aligned}
\alpha \mathbf{x}^{k}-\sqrt{\mathbf{I}-\mathbf{W}} \mathbf{s}^{k}-\nabla f\left(\mathbf{x}^{k}\right) & =\alpha \mathbf{x}^{k+1} \\
-\sqrt{\mathbf{I}-\mathbf{W}} \mathbf{x}^{k}+\beta \mathbf{s}^{k} & =-2 \sqrt{\mathbf{I}-\mathbf{W}} \mathbf{x}^{k+1}+\beta \mathbf{s}^{k+1}
\end{aligned}
$$

forward-backward

- Using forward-backward in the KKT form

$$
\begin{aligned}
& {\left[\begin{array}{cc}
\alpha \mathbf{I} & -\sqrt{\mathbf{I}-\mathbf{W}} \\
-\sqrt{\mathbf{I}-\mathbf{W}} & \beta \mathbf{I}
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}^{k} \\
\mathbf{s}^{k}
\end{array}\right]-\left[\begin{array}{c}
\nabla f\left(\mathbf{x}^{k}\right) \\
\mathbf{0}
\end{array}\right] } \\
= & {\left[\begin{array}{cc}
\alpha \mathbf{I} & -\sqrt{\mathbf{I}-\mathbf{W}} \\
-\sqrt{\mathbf{I}-\mathbf{W}} & \beta \mathbf{I}
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}^{k+1} \\
\mathbf{s}^{k+1}
\end{array}\right]+\left[\begin{array}{cc}
\mathbf{0} & \sqrt{\mathbf{I}-\mathbf{W}} \\
-\sqrt{\mathbf{I}-\mathbf{W}} & \mathbf{0}
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}^{k+1} \\
\mathbf{s}^{k+1}
\end{array}\right] . }
\end{aligned}
$$

- It reduces to

$$
\left[\begin{array}{cc}
\alpha \mathbf{I} & -\sqrt{\mathbf{I}-\mathbf{W}} \\
-\sqrt{\mathbf{I}-\mathbf{W}} & \beta \mathbf{I}
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}^{k} \\
\mathbf{s}^{k}
\end{array}\right]-\left[\begin{array}{c}
\nabla f\left(\mathbf{x}^{k}\right) \\
\mathbf{0}
\end{array}\right]=\left[\begin{array}{cc}
\alpha \mathbf{I} & \mathbf{0} \\
-2 \sqrt{\mathbf{I}-\mathbf{W}} & \beta \mathbf{I}
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}^{k+1} \\
\mathbf{s}^{k+1}
\end{array}\right] .
$$

- It is equivalent to

$$
\begin{aligned}
\alpha \mathbf{x}^{k}-\sqrt{\mathbf{I}-\mathbf{W}} \mathbf{s}^{k}-\nabla f\left(\mathbf{x}^{k}\right) & =\alpha \mathbf{x}^{k+1} \\
-\sqrt{\mathbf{I}-\mathbf{W}} \mathbf{x}^{k}+\beta \mathbf{s}^{k} & =-2 \sqrt{\mathbf{I}-\mathbf{W}} \mathbf{x}^{k+1}+\beta \mathbf{s}^{k+1}
\end{aligned}
$$

- For simplicity, let $\mathbf{t}=\sqrt{\mathbf{I}-\mathbf{W}} \mathbf{s}$, and we have

$$
\begin{aligned}
\alpha \mathbf{x}^{k}-\mathbf{t}^{k}-\nabla f\left(\mathbf{x}^{k}\right) & =\alpha \mathbf{x}^{k+1} \\
-(\mathbf{I}-\mathbf{W}) \mathbf{x}^{k}+\beta \mathbf{t}^{k} & =-2(\mathbf{I}-\mathbf{W}) \mathbf{x}^{k+1}+\beta \mathbf{t}^{k+1}
\end{aligned}
$$

EXact firsT-ordeR Algorithm (EXTRA)

- From the previous slide

$$
\begin{aligned}
\alpha \mathbf{x}^{k}-\mathbf{t}^{k}-\nabla f\left(\mathbf{x}^{k}\right) & =\alpha \mathbf{x}^{k+1} \\
-(\mathbf{I}-\mathbf{W}) \mathbf{x}^{k}+\beta \mathbf{t}^{k} & =-2(\mathbf{I}-\mathbf{W}) \mathbf{x}^{k+1}+\beta \mathbf{t}^{k+1}
\end{aligned}
$$

EXact firsT-ordeR Algorithm (EXTRA)

- From the previous slide

$$
\begin{aligned}
\alpha \mathbf{x}^{k}-\mathbf{t}^{k}-\nabla f\left(\mathbf{x}^{k}\right) & =\alpha \mathbf{x}^{k+1} \\
-(\mathbf{I}-\mathbf{W}) \mathbf{x}^{k}+\beta \mathbf{t}^{k} & =-2(\mathbf{I}-\mathbf{W}) \mathbf{x}^{k+1}+\beta \mathbf{t}^{k+1}
\end{aligned}
$$

- We have

$$
\begin{aligned}
\alpha \mathbf{x}^{k+1} & =\alpha \mathbf{x}^{k}-\mathbf{t}^{k}-\nabla f\left(\mathbf{x}^{k}\right) \\
& =\alpha \mathbf{x}^{k}-\frac{\mathbf{I}-\mathbf{W}}{\beta}\left(2 \mathbf{x}^{k}-\mathbf{x}^{k-1}\right)-\mathbf{t}^{k-1}-\nabla f\left(\mathbf{x}^{k}\right) \\
& =\alpha \mathbf{x}^{k}-\frac{\mathbf{I}-\mathbf{W}}{\beta}\left(2 \mathbf{x}^{k}-\mathbf{x}^{k-1}\right)+\alpha \mathbf{x}^{k}+\nabla f\left(\mathbf{x}^{k-1}\right)-\alpha \mathbf{x}^{k-1}-\nabla f\left(\mathbf{x}^{k}\right) \\
& =\left(\alpha \mathbf{I}-\frac{\mathbf{I}-\mathbf{W}}{\beta}\right)\left(2 \mathbf{x}^{k}-\mathbf{x}^{k-1}\right)+\nabla f\left(\mathbf{x}^{k-1}\right)-\nabla f\left(\mathbf{x}^{k}\right)
\end{aligned}
$$

EXact firsT-ordeR Algorithm (EXTRA)

- From the previous slide

$$
\begin{aligned}
\alpha \mathbf{x}^{k}-\mathbf{t}^{k}-\nabla f\left(\mathbf{x}^{k}\right) & =\alpha \mathbf{x}^{k+1} \\
-(\mathbf{I}-\mathbf{W}) \mathbf{x}^{k}+\beta \mathbf{t}^{k} & =-2(\mathbf{I}-\mathbf{W}) \mathbf{x}^{k+1}+\beta \mathbf{t}^{k+1}
\end{aligned}
$$

- We have

$$
\begin{aligned}
\alpha \mathbf{x}^{k+1} & =\alpha \mathbf{x}^{k}-\mathbf{t}^{k}-\nabla f\left(\mathbf{x}^{k}\right) \\
& =\alpha \mathbf{x}^{k}-\frac{\mathbf{I}-\mathbf{W}}{\beta}\left(2 \mathbf{x}^{k}-\mathbf{x}^{k-1}\right)-\mathbf{t}^{k-1}-\nabla f\left(\mathbf{x}^{k}\right) \\
& =\alpha \mathbf{x}^{k}-\frac{\mathbf{I}-\mathbf{W}}{\beta}\left(2 \mathbf{x}^{k}-\mathbf{x}^{k-1}\right)+\alpha \mathbf{x}^{k}+\nabla f\left(\mathbf{x}^{k-1}\right)-\alpha \mathbf{x}^{k-1}-\nabla f\left(\mathbf{x}^{k}\right) \\
& =\left(\alpha \mathbf{I}-\frac{\mathbf{I}-\mathbf{W}}{\beta}\right)\left(2 \mathbf{x}^{k}-\mathbf{x}^{k-1}\right)+\nabla f\left(\mathbf{x}^{k-1}\right)-\nabla f\left(\mathbf{x}^{k}\right)
\end{aligned}
$$

- Let $\alpha \beta=2$ and we have EXTRA (Shi et al. '15)

$$
\mathbf{x}^{k+1}=\frac{\mathbf{I}+\mathbf{W}}{2}\left(2 \mathbf{x}^{k}-\mathbf{x}^{k-1}\right)-\frac{1}{\alpha}\left(\nabla f\left(\mathbf{x}^{k}\right)-\nabla f\left(\mathbf{x}^{k-1}\right)\right)
$$

convergence conditions for EXTRA: I

EXTRA:

$$
\mathbf{x}^{k+1}=\frac{\mathbf{I}+\mathbf{W}}{2}\left(2 \mathbf{x}^{k}-\mathbf{x}^{k-1}\right)-\frac{1}{\alpha}\left(\nabla f\left(\mathbf{x}^{k}\right)-\nabla f\left(\mathbf{x}^{k-1}\right)\right)
$$

convergence conditions for EXTRA: I

EXTRA:

$$
\mathbf{x}^{k+1}=\frac{\mathbf{I}+\mathbf{W}}{2}\left(2 \mathbf{x}^{k}-\mathbf{x}^{k-1}\right)-\frac{1}{\alpha}\left(\nabla f\left(\mathbf{x}^{k}\right)-\nabla f\left(\mathbf{x}^{k-1}\right)\right)
$$

- If $f=0$:

$$
\left[\begin{array}{c}
\mathbf{x}^{k+1} \\
\mathbf{x}^{k}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{I}+\mathbf{W} & -\frac{\mathbf{I}+\mathbf{W}}{2} \\
\mathbf{I} & \mathbf{0}
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}^{k} \\
\mathbf{x}^{k-1}
\end{array}\right] .
$$

convergence conditions for EXTRA: I

EXTRA:

$$
\mathbf{x}^{k+1}=\frac{\mathbf{I}+\mathbf{W}}{2}\left(2 \mathbf{x}^{k}-\mathbf{x}^{k-1}\right)-\frac{1}{\alpha}\left(\nabla f\left(\mathbf{x}^{k}\right)-\nabla f\left(\mathbf{x}^{k-1}\right)\right)
$$

- If $f=0$:

$$
\left[\begin{array}{c}
\mathbf{x}^{k+1} \\
\mathbf{x}^{k}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{I}+\mathbf{W} & -\frac{\mathbf{I}+\mathbf{W}}{2} \\
\mathbf{I} & \mathbf{0}
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}^{k} \\
\mathbf{x}^{k-1}
\end{array}\right] .
$$

- Let $\mathbf{I}+\mathbf{W}=\mathbf{U} \Sigma \mathbf{U}^{\top}$.

$$
\left[\begin{array}{cc}
\mathbf{I}+\mathbf{W} & -\frac{\mathbf{I}+\mathbf{W}}{2} \\
\mathbf{I} & \mathbf{0}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{U} & \\
& \mathbf{U}
\end{array}\right]\left[\begin{array}{cc}
\Sigma & -\frac{\Sigma}{2} \\
\mathbf{I} & \mathbf{0}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{U}^{\top} & 0 \\
& \mathbf{U}^{\top}
\end{array}\right] .
$$

convergence conditions for EXTRA: I

EXTRA:

$$
\mathbf{x}^{k+1}=\frac{\mathbf{I}+\mathbf{W}}{2}\left(2 \mathbf{x}^{k}-\mathbf{x}^{k-1}\right)-\frac{1}{\alpha}\left(\nabla f\left(\mathbf{x}^{k}\right)-\nabla f\left(\mathbf{x}^{k-1}\right)\right)
$$

- If $f=0$:

$$
\left[\begin{array}{c}
\mathbf{x}^{k+1} \\
\mathbf{x}^{k}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{I}+\mathbf{W} & -\frac{\mathbf{I}+\mathbf{W}}{2} \\
\mathbf{I} & \mathbf{0}
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}^{k} \\
\mathbf{x}^{k-1}
\end{array}\right] .
$$

- Let $\mathbf{I}+\mathbf{W}=\mathbf{U} \Sigma \mathbf{U}^{\top}$.

$$
\left[\begin{array}{cc}
\mathbf{I}+\mathbf{W} & -\frac{\mathbf{I}+\mathbf{W}}{2} \\
\mathbf{I} & \mathbf{0}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{U} & \\
& \mathbf{U}
\end{array}\right]\left[\begin{array}{cc}
\Sigma & -\frac{\Sigma}{2} \\
\mathbf{I} & \mathbf{0}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{U}^{\top} & 0 \\
& \mathbf{U}^{\top}
\end{array}\right] .
$$

- The iteration becomes

$$
\left[\begin{array}{c}
\mathbf{U}^{\top} \mathbf{x}^{k+1} \\
\mathbf{U}^{\top} \mathbf{x}^{k}
\end{array}\right]=\left[\begin{array}{cc}
\Sigma & -\frac{\Sigma}{2} \\
\mathbf{I} & \mathbf{0}
\end{array}\right]\left[\begin{array}{c}
\mathbf{U}^{\top} \mathbf{x}^{k} \\
\mathbf{U}^{\top} \mathbf{x}^{k-1}
\end{array}\right] .
$$

convergence conditions for EXTRA: I

EXTRA:

$$
\mathbf{x}^{k+1}=\frac{\mathbf{I}+\mathbf{W}}{2}\left(2 \mathbf{x}^{k}-\mathbf{x}^{k-1}\right)-\frac{1}{\alpha}\left(\nabla f\left(\mathbf{x}^{k}\right)-\nabla f\left(\mathbf{x}^{k-1}\right)\right)
$$

- If $f=0$:

$$
\left[\begin{array}{c}
\mathbf{x}^{k+1} \\
\mathbf{x}^{k}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{I}+\mathbf{W} & -\frac{\mathbf{I}+\mathbf{W}}{2} \\
\mathbf{I} & \mathbf{0}
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}^{k} \\
\mathbf{x}^{k-1}
\end{array}\right]
$$

- Let $\mathbf{I}+\mathbf{W}=\mathbf{U} \Sigma \mathbf{U}^{\top}$.

$$
\left[\begin{array}{cc}
\mathbf{I}+\mathbf{W} & -\frac{\mathbf{I}+\mathbf{W}}{2} \\
\mathbf{I} & \mathbf{0}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{U} & \\
& \mathbf{U}
\end{array}\right]\left[\begin{array}{cc}
\Sigma & -\frac{\Sigma}{2} \\
\mathbf{I} & \mathbf{0}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{U}^{\top} & 0 \\
& \mathbf{U}^{\top}
\end{array}\right]
$$

- The iteration becomes

$$
\left[\begin{array}{c}
\mathbf{U}^{\top} \mathbf{x}^{k+1} \\
\mathbf{U}^{\top} \mathbf{x}^{k}
\end{array}\right]=\left[\begin{array}{cc}
\Sigma & -\frac{\Sigma}{2} \\
\mathbf{I} & \mathbf{0}
\end{array}\right]\left[\begin{array}{c}
\mathbf{U}^{\top} \mathbf{x}^{k} \\
\mathbf{U}^{\top} \mathbf{x}^{k-1}
\end{array}\right]
$$

- The condition for \mathbf{W} is $-2 / 3<\lambda(\Sigma)=\lambda(\mathbf{W}+\mathbf{I}) \leq 2$, which is $-5 / 3<\lambda(\mathbf{W}) \leq 1$.

convergence conditions for EXTRA: II

EXTRA:

$$
\mathbf{x}^{k+1}=\frac{\mathbf{I}+\mathbf{W}}{2}\left(2 \mathbf{x}^{k}-\mathbf{x}^{k-1}\right)-\frac{1}{\alpha}\left(\nabla f\left(\mathbf{x}^{k}\right)-\nabla f\left(\mathbf{x}^{k-1}\right)\right)
$$

convergence conditions for EXTRA: II

EXTRA:

$$
\mathbf{x}^{k+1}=\frac{\mathbf{I}+\mathbf{W}}{2}\left(2 \mathbf{x}^{k}-\mathbf{x}^{k-1}\right)-\frac{1}{\alpha}\left(\nabla f\left(\mathbf{x}^{k}\right)-\nabla f\left(\mathbf{x}^{k-1}\right)\right)
$$

- If $\nabla f\left(\mathbf{x}^{k}\right)=\mathbf{x}^{k}-\mathbf{b}$:

$$
\left[\begin{array}{c}
\mathbf{x}^{k+1} \\
\mathbf{x}^{k}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{I}+\mathbf{W}-\frac{1}{\alpha} \mathbf{I} & -\frac{\mathbf{I}+\mathbf{W}}{2}+\frac{1}{\alpha} \mathbf{I} \\
\mathbf{I} & \mathbf{0}
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}^{k} \\
\mathbf{x}^{k-1}
\end{array}\right]
$$

convergence conditions for EXTRA: II

EXTRA:

$$
\mathbf{x}^{k+1}=\frac{\mathbf{I}+\mathbf{W}}{2}\left(2 \mathbf{x}^{k}-\mathbf{x}^{k-1}\right)-\frac{1}{\alpha}\left(\nabla f\left(\mathbf{x}^{k}\right)-\nabla f\left(\mathbf{x}^{k-1}\right)\right)
$$

- If $\nabla f\left(\mathrm{x}^{k}\right)=\mathrm{x}^{k}-\mathbf{b}$:

$$
\left[\begin{array}{c}
\mathbf{x}^{k+1} \\
\mathbf{x}^{k}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{I}+\mathbf{W}-\frac{1}{\alpha} \mathbf{I} & -\frac{\mathbf{I}+\mathbf{W}}{2}+\frac{1}{\alpha} \mathbf{I} \\
\mathbf{I} & \mathbf{0}
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}^{k} \\
\mathbf{x}^{k-1}
\end{array}\right] .
$$

- Let $\mathbf{I}+\mathbf{W}=\mathbf{U} \Sigma \mathbf{U}^{\top}$.

$$
\left[\begin{array}{cc}
\mathbf{I}+\mathbf{W}-\frac{1}{\alpha} \mathbf{I} & -\frac{\mathbf{I}+\mathbf{W}}{2}+\frac{1}{\alpha} \mathbf{I} \\
\mathbf{I} & \mathbf{0}
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{U} & \\
& \mathbf{U}
\end{array}\right]\left[\begin{array}{cc}
\Sigma-\frac{1}{\alpha} \mathbf{I} & -\frac{\Sigma}{2}+\frac{1}{\alpha} \mathbf{I} \\
\mathbf{I} & \mathbf{0}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{U}^{\top} & 0 \\
& \mathbf{U}^{\top}
\end{array}\right] .
$$

convergence conditions for EXTRA: II

EXTRA:

$$
\mathbf{x}^{k+1}=\frac{\mathbf{I}+\mathbf{W}}{2}\left(2 \mathbf{x}^{k}-\mathbf{x}^{k-1}\right)-\frac{1}{\alpha}\left(\nabla f\left(\mathbf{x}^{k}\right)-\nabla f\left(\mathbf{x}^{k-1}\right)\right)
$$

- If $\nabla f\left(\mathrm{x}^{k}\right)=\mathrm{x}^{k}-\mathbf{b}$:

$$
\left[\begin{array}{c}
\mathbf{x}^{k+1} \\
\mathbf{x}^{k}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{I}+\mathbf{W}-\frac{1}{\alpha} \mathbf{I} & -\frac{\mathbf{I}+\mathbf{W}}{2}+\frac{1}{\alpha} \mathbf{I} \\
\mathbf{I} & \mathbf{0}
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}^{k} \\
\mathbf{x}^{k-1}
\end{array}\right] .
$$

- Let $\mathbf{I}+\mathbf{W}=\mathbf{U} \Sigma \mathbf{U}^{\top}$.

$$
\left[\begin{array}{cc}
\mathbf{I}+\mathbf{W}-\frac{1}{\alpha} \mathbf{I} & -\frac{\mathbf{I}+\mathbf{W}}{2}+\frac{1}{\alpha} \mathbf{I} \\
\mathbf{I} & \mathbf{0}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{U} & \\
& \mathbf{U}
\end{array}\right]\left[\begin{array}{cc}
\Sigma-\frac{1}{\alpha} \mathbf{I} & -\frac{\Sigma}{2}+\frac{1}{\alpha} \mathbf{I} \\
\mathbf{I} & \mathbf{0}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{U}^{\top} & 0 \\
& \mathbf{U}^{\top}
\end{array}\right] .
$$

- The condition for \mathbf{W} is $4 /(3 \alpha)-2 / 3<\lambda(\Sigma)=\lambda(\mathbf{W}+\mathbf{I}) \leq 2$, which is $4 /(3 \alpha)-5 / 3<\lambda(\mathbf{W}) \leq 1$. In addition, we have stepsize $1 / \alpha<2$.

conditions for general EXTRA

EXTRA:

$$
\mathbf{x}^{k+1}=\frac{\mathbf{I}+\mathbf{W}}{2}\left(2 \mathbf{x}^{k}-\mathbf{x}^{k-1}\right)-\frac{1}{\alpha}\left(\nabla f\left(\mathbf{x}^{k}\right)-\nabla f\left(\mathbf{x}^{k-1}\right)\right)
$$

conditions for general EXTRA

EXTRA:

$$
\mathbf{x}^{k+1}=\frac{\mathbf{I}+\mathbf{W}}{2}\left(2 \mathbf{x}^{k}-\mathbf{x}^{k-1}\right)-\frac{1}{\alpha}\left(\nabla f\left(\mathbf{x}^{k}\right)-\nabla f\left(\mathbf{x}^{k-1}\right)\right)
$$

Initial condition $(k=0,1)$:

$$
\mathbf{x}^{1}=\mathbf{x}^{0}-\frac{1}{\alpha} \nabla f\left(\mathbf{x}^{0}\right)
$$

conditions for general EXTRA

EXTRA:

$$
\mathbf{x}^{k+1}=\frac{\mathbf{I}+\mathbf{W}}{2}\left(2 \mathbf{x}^{k}-\mathbf{x}^{k-1}\right)-\frac{1}{\alpha}\left(\nabla f\left(\mathbf{x}^{k}\right)-\nabla f\left(\mathbf{x}^{k-1}\right)\right)
$$

Initial condition $(k=0,1)$:

$$
\mathbf{x}^{1}=\mathbf{x}^{0}-\frac{1}{\alpha} \nabla f\left(\mathbf{x}^{0}\right)
$$

Convergence condition (Li-Yan '17):

$$
\begin{gathered}
4 /(3 \alpha)-5 / 3<\lambda(\mathbf{W}) \leq 1 \\
1 / \alpha<2 / L
\end{gathered}
$$

conditions for general EXTRA

EXTRA:

$$
\mathbf{x}^{k+1}=\frac{\mathbf{I}+\mathbf{W}}{2}\left(2 \mathbf{x}^{k}-\mathbf{x}^{k-1}\right)-\frac{1}{\alpha}\left(\nabla f\left(\mathbf{x}^{k}\right)-\nabla f\left(\mathbf{x}^{k-1}\right)\right)
$$

Initial condition $(k=0,1)$:

$$
\mathbf{x}^{1}=\mathbf{x}^{0}-\frac{1}{\alpha} \nabla f\left(\mathbf{x}^{0}\right)
$$

Convergence condition (Li-Yan '17):

$$
\begin{gathered}
4 /(3 \alpha)-5 / 3<\lambda(\mathbf{W}) \leq 1 \\
1 / \alpha<2 / L
\end{gathered}
$$

Linear convergence condition:

- $f(\mathbf{x})$ is strongly convex. (Li-Yan '17)

conditions for general EXTRA

EXTRA:

$$
\mathbf{x}^{k+1}=\frac{\mathbf{I}+\mathbf{W}}{2}\left(2 \mathbf{x}^{k}-\mathbf{x}^{k-1}\right)-\frac{1}{\alpha}\left(\nabla f\left(\mathbf{x}^{k}\right)-\nabla f\left(\mathbf{x}^{k-1}\right)\right)
$$

Initial condition $(k=0,1)$:

$$
\mathbf{x}^{1}=\mathbf{x}^{0}-\frac{1}{\alpha} \nabla f\left(\mathbf{x}^{0}\right)
$$

Convergence condition (Li-Yan '17):

$$
\begin{gathered}
4 /(3 \alpha)-5 / 3<\lambda(\mathbf{W}) \leq 1 \\
1 / \alpha<2 / L
\end{gathered}
$$

Linear convergence condition:

- $f(\mathbf{x})$ is strongly convex. (Li-Yan '17)
- weaker condition on $f(\mathbf{x})$ but more restrict condition for both parameters. (Shi et al. '15)

large stepsize as centralized ones?

decentralized smooth optimization

Problem:

$$
\underset{\mathbf{x}}{\operatorname{minimize}} f(\mathbf{x}), \quad \text { s.t. } \sqrt{\mathbf{I}-\mathbf{W}} \mathbf{x}=\mathbf{0}
$$

decentralized smooth optimization

Problem:

$$
\underset{\mathbf{x}}{\operatorname{minimize}} f(\mathbf{x}), \quad \text { s.t. } \sqrt{\mathbf{I}-\mathbf{W}} \mathbf{x}=\mathbf{0} .
$$

- Lagrangian function

$$
f(\mathbf{x})+\langle\sqrt{\mathbf{I}-\mathbf{W}} \mathbf{x}, \mathbf{s}\rangle,
$$

where \mathbf{s} is the Lagrangian multiplier.

decentralized smooth optimization

Problem:

$$
\underset{\mathbf{x}}{\operatorname{minimize}} f(\mathbf{x}), \quad \text { s.t. } \sqrt{\mathbf{I}-\mathbf{W}} \mathbf{x}=\mathbf{0} .
$$

- Lagrangian function

$$
f(\mathbf{x})+\langle\sqrt{\mathbf{I}-\mathbf{W}} \mathbf{x}, \mathbf{s}\rangle
$$

where \mathbf{s} is the Lagrangian multiplier.

- Optimality condition (KKT):

$$
\begin{aligned}
& \mathbf{0}=\nabla f\left(\mathbf{x}^{*}\right)+\sqrt{\mathbf{I}-\mathbf{W}} \mathbf{s}^{*} \\
& \mathbf{0}=-\sqrt{\mathbf{I}-\mathbf{W}} \mathbf{x}^{*}
\end{aligned}
$$

decentralized smooth optimization

Problem:

$$
\underset{\mathbf{x}}{\operatorname{minimize}} f(\mathbf{x}), \quad \text { s.t. } \sqrt{\mathbf{I}-\mathbf{W}} \mathbf{x}=\mathbf{0} .
$$

- Lagrangian function

$$
f(\mathbf{x})+\langle\sqrt{\mathbf{I}-\mathbf{W}} \mathbf{x}, \mathbf{s}\rangle
$$

where \mathbf{s} is the Lagrangian multiplier.

- Optimality condition (KKT):

$$
\begin{aligned}
& \mathbf{0}=\nabla f\left(\mathbf{x}^{*}\right)+\sqrt{\mathbf{I}-\mathbf{W}} \mathbf{s}^{*} \\
& \mathbf{0}=-\sqrt{\mathbf{I}-\mathbf{W}} \mathbf{x}^{*}
\end{aligned}
$$

- It is the same as

$$
-\left[\begin{array}{c}
\nabla f\left(\mathbf{x}^{*}\right) \\
\mathbf{0}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{0} & \sqrt{\mathbf{I}-\mathbf{W}} \\
-\sqrt{\mathbf{I}-\mathbf{W}} & \mathbf{0}
\end{array}\right]\left[\begin{array}{l}
\mathbf{x}^{*} \\
\mathbf{s}^{*}
\end{array}\right]
$$

forward-backward

- The KKT system

$$
\begin{aligned}
& -\left[\begin{array}{c}
\nabla f\left(\mathbf{x}^{*}\right) \\
\mathbf{0}
\end{array}\right] \\
= & {\left[\begin{array}{cc}
\mathbf{0} & \sqrt{\mathbf{I}-\mathbf{W}} \\
-\sqrt{\mathbf{I}-\mathbf{W}} & \mathbf{0}
\end{array}\right]\left[\begin{array}{l}
\mathbf{x}^{*} \\
\mathbf{s}^{*}
\end{array}\right] . }
\end{aligned}
$$

forward-backward

- Using forward-backward in the KKT form

$$
\begin{aligned}
& {\left[\begin{array}{cc}
\alpha \mathbf{I} & \mathbf{0} \\
\mathbf{0} & \beta \mathbf{I}-\frac{1}{\alpha}(\mathbf{I}-\mathbf{W})
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}^{k} \\
\mathbf{s}^{k}
\end{array}\right]-\left[\begin{array}{c}
\nabla f\left(\mathbf{x}^{k}\right) \\
\mathbf{0}
\end{array}\right] } \\
= & {\left[\begin{array}{cc}
\alpha \mathbf{I} & \mathbf{0} \\
\mathbf{0} & \beta \mathbf{I}-\frac{1}{\alpha}(\mathbf{I}-\mathbf{W})
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}^{k+1} \\
\mathbf{s}^{k+1}
\end{array}\right]+\left[\begin{array}{cc}
\mathbf{0} & \sqrt{\mathbf{I}-\mathbf{W}} \\
-\sqrt{\mathbf{I}-\mathbf{W}} & \mathbf{0}
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}^{k+1} \\
\mathbf{s}^{k+1}
\end{array}\right] . }
\end{aligned}
$$

forward-backward

- Combine the right hand side:

$$
\begin{aligned}
& {\left[\begin{array}{cc}
\alpha \mathbf{I} & \mathbf{0} \\
\mathbf{0} & \beta \mathbf{I}-\frac{1}{\alpha}(\mathbf{I}-\mathbf{W})
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}^{k} \\
\mathbf{s}^{k}
\end{array}\right]-\left[\begin{array}{c}
\nabla f\left(\mathbf{x}^{k}\right) \\
\mathbf{0}
\end{array}\right] } \\
= & {\left[\begin{array}{cc}
\alpha \mathbf{I} & \sqrt{\mathbf{I}-\mathbf{W}} \\
-\sqrt{\mathbf{I}-\mathbf{W}} & \beta \mathbf{I}-\frac{1}{\alpha}(\mathbf{I}-\mathbf{W})
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}^{k+1} \\
\mathbf{s}^{k+1}
\end{array}\right] . }
\end{aligned}
$$

forward-backward

- Combine the right hand side:

$$
\begin{aligned}
& {\left[\begin{array}{cc}
\alpha \mathbf{I} & \mathbf{0} \\
\mathbf{0} & \beta \mathbf{I}-\frac{1}{\alpha}(\mathbf{I}-\mathbf{W})
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}^{k} \\
\mathbf{s}^{k}
\end{array}\right]-\left[\begin{array}{c}
\nabla f\left(\mathbf{x}^{k}\right) \\
\mathbf{0}
\end{array}\right] } \\
= & {\left[\begin{array}{cc}
\alpha \mathbf{I} & \sqrt{\mathbf{I}-\mathbf{W}} \\
-\sqrt{\mathbf{I}-\mathbf{W}} & \beta \mathbf{I}-\frac{1}{\alpha}(\mathbf{I}-\mathbf{W})
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}^{k+1} \\
\mathbf{s}^{k+1}
\end{array}\right] . }
\end{aligned}
$$

- Apply Gaussian elimination:

$$
\begin{aligned}
& {\left[\begin{array}{cc}
\alpha \mathbf{I} & \mathbf{0} \\
\sqrt{\mathbf{I}-\mathbf{W}} & \beta \mathbf{I}-\frac{1}{\alpha}(\mathbf{I}-\mathbf{W})
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}^{k} \\
\mathbf{s}^{k}
\end{array}\right]-\left[\begin{array}{c}
\nabla f\left(\mathbf{x}^{k}\right) \\
\frac{1}{\alpha} \sqrt{\mathbf{I}-\mathbf{W}} \nabla f\left(\mathbf{x}^{k}\right)
\end{array}\right] } \\
= & {\left[\begin{array}{cc}
\alpha \mathbf{I} & \sqrt{\mathbf{I}-\mathbf{W}} \\
\mathbf{0} & \beta \mathbf{I}
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}^{k+1} \\
\mathbf{s}^{k+1}
\end{array}\right] . }
\end{aligned}
$$

forward-backward

- Combine the right hand side:

$$
\begin{aligned}
& {\left[\begin{array}{cc}
\alpha \mathbf{I} & \mathbf{0} \\
\mathbf{0} & \beta \mathbf{I}-\frac{1}{\alpha}(\mathbf{I}-\mathbf{W})
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}^{k} \\
\mathbf{s}^{k}
\end{array}\right]-\left[\begin{array}{c}
\nabla f\left(\mathbf{x}^{k}\right) \\
\mathbf{0}
\end{array}\right] } \\
= & {\left[\begin{array}{cc}
\alpha \mathbf{I} & \sqrt{\mathbf{I}-\mathbf{W}} \\
-\sqrt{\mathbf{I}-\mathbf{W}} & \beta \mathbf{I}-\frac{1}{\alpha}(\mathbf{I}-\mathbf{W})
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}^{k+1} \\
\mathbf{s}^{k+1}
\end{array}\right] . }
\end{aligned}
$$

- Apply Gaussian elimination:

$$
\begin{aligned}
& {\left[\begin{array}{cc}
\alpha \mathbf{I} & \mathbf{0} \\
\sqrt{\mathbf{I}-\mathbf{W}} & \beta \mathbf{I}-\frac{1}{\alpha}(\mathbf{I}-\mathbf{W})
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}^{k} \\
\mathbf{s}^{k}
\end{array}\right]-\left[\begin{array}{c}
\nabla f\left(\mathbf{x}^{k}\right) \\
\frac{1}{\alpha} \sqrt{\mathbf{I}-\mathbf{W}} \nabla f\left(\mathbf{x}^{k}\right)
\end{array}\right] } \\
= & {\left[\begin{array}{cc}
\alpha \mathbf{I} & \sqrt{\mathbf{I}-\mathbf{W}} \\
\mathbf{0} & \beta \mathbf{I}
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}^{k+1} \\
\mathbf{s}^{k+1}
\end{array}\right] . }
\end{aligned}
$$

- It is equivalent to

$$
\begin{aligned}
\alpha \mathbf{x}^{k}-\nabla f\left(\mathbf{x}^{k}\right)-\sqrt{\mathbf{I}-\mathbf{W}} \mathbf{s}^{k+1} & =\alpha \mathbf{x}^{k+1} \\
\sqrt{\mathbf{I}-\mathbf{W}} \mathbf{x}^{k}+\beta\left(\mathbf{I}-\frac{1}{\alpha \beta}(\mathbf{I}-\mathbf{W})\right) \mathbf{s}^{k}-\frac{1}{\alpha} \sqrt{\mathbf{I}-\mathbf{W}} \nabla f\left(\mathbf{x}^{k}\right) & =\beta \mathbf{s}^{k+1}
\end{aligned}
$$

NIDS (Li-Shi-Yan '17)

From the previous slide:

$$
\begin{aligned}
& \alpha \mathbf{x}^{k}-\nabla f\left(\mathbf{x}^{k}\right)-\sqrt{\mathbf{I}-\mathbf{W}} \mathbf{s}^{k+1}=\alpha \mathbf{x}^{k+1} \\
& \sqrt{\mathbf{I}-\mathbf{W}} \mathbf{x}^{k}+\beta\left(\mathbf{I}-\frac{1}{\alpha \beta}(\mathbf{I}-\mathbf{W})\right) \mathbf{s}^{k}-\frac{1}{\alpha} \sqrt{\mathbf{I}-\mathbf{W} \nabla f\left(\mathbf{x}^{k}\right)}=\beta \mathbf{s}^{k+1}
\end{aligned}
$$

NIDS (Li-Shi-Yan '17)

From the previous slide:

$$
\begin{aligned}
& \alpha \mathbf{x}^{k}-\nabla f\left(\mathbf{x}^{k}\right)-\sqrt{\mathbf{I}-\mathbf{W}} \mathbf{s}^{k+1}=\alpha \mathbf{x}^{k+1} \\
& \sqrt{\mathbf{I}-\mathbf{W}} \mathbf{x}^{k}+\beta\left(\mathbf{I}-\frac{1}{\alpha \beta}(\mathbf{I}-\mathbf{W})\right) \mathbf{s}^{k}-\frac{1}{\alpha} \sqrt{\mathbf{I}-\mathbf{W} \nabla f\left(\mathbf{x}^{k}\right)}=\beta \mathbf{s}^{k+1}
\end{aligned}
$$

Let $\mathbf{t}=\sqrt{\mathbf{I}-\mathbf{W}} \mathbf{s}$:

$$
\begin{aligned}
\alpha \mathbf{x}^{k}-\nabla f\left(\mathbf{x}^{k}\right)-\mathbf{t}^{k+1} & =\alpha \mathbf{x}^{k+1} \\
-(\mathbf{I}-\mathbf{W}) \mathbf{x}^{k}+\beta\left(\mathbf{I}-\frac{1}{\alpha \beta}(\mathbf{I}-\mathbf{W})\right) \mathbf{t}^{k}-\frac{1}{\alpha}(\mathbf{I}-\mathbf{W}) \nabla f\left(\mathbf{x}^{k}\right) & =\beta \mathbf{t}^{k+1}
\end{aligned}
$$

NIDS (Li-Shi-Yan '17)

Let $\mathbf{t}=\sqrt{\mathbf{I}-\mathbf{W}} \mathbf{s}$:

$$
\begin{aligned}
\alpha \mathbf{x}^{k}-\nabla f\left(\mathbf{x}^{k}\right)-\mathbf{t}^{k+1} & =\alpha \mathbf{x}^{k+1}, \\
-(\mathbf{I}-\mathbf{W}) \mathbf{x}^{k}+\beta\left(\mathbf{I}-\frac{1}{\alpha \beta}(\mathbf{I}-\mathbf{W})\right) \mathbf{t}^{k}-\frac{1}{\alpha}(\mathbf{I}-\mathbf{W}) \nabla f\left(\mathbf{x}^{k}\right) & =\beta \mathbf{t}^{k+1}
\end{aligned}
$$

NIDS (Li-Shi-Yan '17)

Let $\mathbf{t}=\sqrt{\mathbf{I}-\mathbf{W}} \mathbf{s}$:

$$
\begin{aligned}
\alpha \mathbf{x}^{k}-\nabla f\left(\mathbf{x}^{k}\right)-\mathbf{t}^{k+1} & =\alpha \mathbf{x}^{k+1}, \\
-(\mathbf{I}-\mathbf{W}) \mathbf{x}^{k}+\beta\left(\mathbf{I}-\frac{1}{\alpha \beta}(\mathbf{I}-\mathbf{W})\right) \mathbf{t}^{k}-\frac{1}{\alpha}(\mathbf{I}-\mathbf{W}) \nabla f\left(\mathbf{x}^{k}\right) & =\beta \mathbf{t}^{k+1}
\end{aligned}
$$

We have

$$
\begin{aligned}
& \alpha \mathbf{x}^{k+1} \\
= & \alpha \mathbf{x}^{k}-\nabla f\left(\mathbf{x}^{k}\right)-\mathbf{t}^{k+1} \\
= & \alpha \mathbf{x}^{k}-\nabla f\left(\mathbf{x}^{k}\right)-\left(\mathbf{I}-\frac{1}{\alpha \beta}(\mathbf{I}-\mathbf{W})\right) \mathbf{t}^{k}-\frac{1}{\beta}(\mathbf{I}-\mathbf{W}) \mathbf{x}^{k}+\frac{1}{\alpha \beta}(\mathbf{I}-\mathbf{W}) \nabla f\left(\mathbf{x}^{k}\right) \\
= & \left(\mathbf{I}-\frac{1}{\alpha \beta}(\mathbf{I}-\mathbf{W})\right)\left(\alpha \mathbf{x}^{k}-\mathbf{t}^{k}-\nabla f\left(\mathbf{x}^{k}\right)\right) \\
= & \left(\mathbf{I}-\frac{1}{\alpha \beta}(\mathbf{I}-\mathbf{W})\right)\left(\alpha \mathbf{x}^{k}+\alpha \mathbf{x}^{k}-\alpha \mathbf{x}^{k-1}+\nabla f\left(\mathbf{x}^{k-1}\right)-\nabla f\left(\mathbf{x}^{k}\right)\right) .
\end{aligned}
$$

NIDS (Li-Shi-Yan '17)

Let $\mathbf{t}=\sqrt{\mathbf{I}-\mathbf{W}} \mathbf{s}$:

$$
\begin{aligned}
\alpha \mathbf{x}^{k}-\nabla f\left(\mathbf{x}^{k}\right)-\mathbf{t}^{k+1} & =\alpha \mathbf{x}^{k+1}, \\
-(\mathbf{I}-\mathbf{W}) \mathbf{x}^{k}+\beta\left(\mathbf{I}-\frac{1}{\alpha \beta}(\mathbf{I}-\mathbf{W})\right) \mathbf{t}^{k}-\frac{1}{\alpha}(\mathbf{I}-\mathbf{W}) \nabla f\left(\mathbf{x}^{k}\right) & =\beta \mathbf{t}^{k+1} .
\end{aligned}
$$

We have

$$
\begin{aligned}
& \alpha \mathbf{x}^{k+1} \\
= & \alpha \mathbf{x}^{k}-\nabla f\left(\mathbf{x}^{k}\right)-\mathbf{t}^{k+1} \\
= & \alpha \mathbf{x}^{k}-\nabla f\left(\mathbf{x}^{k}\right)-\left(\mathbf{I}-\frac{1}{\alpha \beta}(\mathbf{I}-\mathbf{W})\right) \mathbf{t}^{k}-\frac{1}{\beta}(\mathbf{I}-\mathbf{W}) \mathbf{x}^{k}+\frac{1}{\alpha \beta}(\mathbf{I}-\mathbf{W}) \nabla f\left(\mathbf{x}^{k}\right) \\
= & \left(\mathbf{I}-\frac{1}{\alpha \beta}(\mathbf{I}-\mathbf{W})\right)\left(\alpha \mathbf{x}^{k}-\mathbf{t}^{k}-\nabla f\left(\mathbf{x}^{k}\right)\right) \\
= & \left(\mathbf{I}-\frac{1}{\alpha \beta}(\mathbf{I}-\mathbf{W})\right)\left(\alpha \mathbf{x}^{k}+\alpha \mathbf{x}^{k}-\alpha \mathbf{x}^{k-1}+\nabla f\left(\mathbf{x}^{k-1}\right)-\nabla f\left(\mathbf{x}^{k}\right)\right) .
\end{aligned}
$$

Thus

$$
\mathbf{x}^{k+1}=\left(\mathbf{I}-\frac{1}{\alpha \beta}(\mathbf{I}-\mathbf{W})\right)\left(2 \mathbf{x}^{k}-\mathbf{x}^{k-1}-\frac{1}{\alpha}\left(\nabla f\left(\mathbf{x}^{k}\right)-\nabla f\left(\mathbf{x}^{k-1}\right)\right)\right.
$$

convergence conditions for NIDS

NIDS (with $\alpha \beta=2$):

$$
\mathbf{x}^{k+1}=\frac{\mathbf{I}+\mathbf{W}}{2}\left(2 \mathbf{x}^{k}-\mathbf{x}^{k-1}-\frac{1}{\alpha}\left(\nabla f\left(\mathbf{x}^{k}\right)-\nabla f\left(\mathbf{x}^{k-1}\right)\right)\right.
$$

convergence conditions for NIDS

NIDS (with $\alpha \beta=2$):

$$
\mathbf{x}^{k+1}=\frac{\mathbf{I}+\mathbf{W}}{2}\left(2 \mathbf{x}^{k}-\mathbf{x}^{k-1}-\frac{1}{\alpha}\left(\nabla f\left(\mathbf{x}^{k}\right)-\nabla f\left(\mathbf{x}^{k-1}\right)\right)\right.
$$

- If $f=0$ (same as EXTRA): The condition for \mathbf{W} is $-5 / 3<\lambda(\mathbf{W}) \leq 1$.

convergence conditions for NIDS

NIDS (with $\alpha \beta=2$):

$$
\mathbf{x}^{k+1}=\frac{\mathbf{I}+\mathbf{W}}{2}\left(2 \mathbf{x}^{k}-\mathbf{x}^{k-1}-\frac{1}{\alpha}\left(\nabla f\left(\mathbf{x}^{k}\right)-\nabla f\left(\mathbf{x}^{k-1}\right)\right)\right.
$$

- If $f=0$ (same as EXTRA): The condition for \mathbf{W} is $-5 / 3<\lambda(\mathbf{W}) \leq 1$.
- If $\nabla f\left(\mathbf{x}^{k}\right)=\mathbf{x}^{k}-\mathbf{b}$:

$$
\left[\begin{array}{c}
\mathbf{x}^{k+1} \\
\mathbf{x}^{k}
\end{array}\right]=\left[\begin{array}{cc}
\left(2-\frac{1}{\alpha}\right) \frac{\mathbf{I}+\mathbf{W}}{2} & -\left(1-\frac{1}{\alpha}\right) \frac{\mathbf{I}+\mathbf{W}}{2} \\
\mathbf{I} & \mathbf{0}
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}^{k} \\
\mathbf{x}^{k-1}
\end{array}\right]
$$

convergence conditions for NIDS

NIDS (with $\alpha \beta=2$):

$$
\mathbf{x}^{k+1}=\frac{\mathbf{I}+\mathbf{W}}{2}\left(2 \mathbf{x}^{k}-\mathbf{x}^{k-1}-\frac{1}{\alpha}\left(\nabla f\left(\mathbf{x}^{k}\right)-\nabla f\left(\mathbf{x}^{k-1}\right)\right)\right.
$$

- If $f=0$ (same as EXTRA): The condition for \mathbf{W} is $-5 / 3<\lambda(\mathbf{W}) \leq 1$.
- If $\nabla f\left(\mathbf{x}^{k}\right)=\mathbf{x}^{k}-\mathbf{b}$:

$$
\left[\begin{array}{c}
\mathbf{x}^{k+1} \\
\mathbf{x}^{k}
\end{array}\right]=\left[\begin{array}{cc}
\left(2-\frac{1}{\alpha}\right) \frac{\mathbf{I}+\mathbf{W}}{2} & -\left(1-\frac{1}{\alpha}\right) \frac{\mathbf{I}+\mathbf{W}}{2} \\
\mathbf{I} & \mathbf{0}
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}^{k} \\
\mathbf{x}^{k-1}
\end{array}\right]
$$

- Let $\mathbf{I}+\mathbf{W}=\mathbf{U} \Sigma \mathbf{U}^{\top}$.

$$
\left[\begin{array}{c}
\mathbf{U}^{\top} \mathbf{x}^{k+1} \\
\mathbf{U}^{\top} \mathbf{x}^{k}
\end{array}\right]=\left[\begin{array}{cc}
\left(2-\frac{1}{\alpha}\right) \frac{\Sigma}{2} & -\left(1-\frac{1}{\alpha}\right) \frac{\Sigma}{2} \\
\mathbf{I} & \mathbf{0}
\end{array}\right]\left[\begin{array}{c}
\mathbf{U}^{\top} \mathbf{x}^{k} \\
\mathbf{U}^{\top} \mathbf{x}^{k-1}
\end{array}\right]
$$

convergence conditions for NIDS

NIDS (with $\alpha \beta=2$):

$$
\mathbf{x}^{k+1}=\frac{\mathbf{I}+\mathbf{W}}{2}\left(2 \mathbf{x}^{k}-\mathbf{x}^{k-1}-\frac{1}{\alpha}\left(\nabla f\left(\mathbf{x}^{k}\right)-\nabla f\left(\mathbf{x}^{k-1}\right)\right)\right.
$$

- If $f=0$ (same as EXTRA): The condition for \mathbf{W} is $-5 / 3<\lambda(\mathbf{W}) \leq 1$.
- If $\nabla f\left(\mathbf{x}^{k}\right)=\mathbf{x}^{k}-\mathbf{b}$:

$$
\left[\begin{array}{c}
\mathbf{x}^{k+1} \\
\mathbf{x}^{k}
\end{array}\right]=\left[\begin{array}{cc}
\left(2-\frac{1}{\alpha}\right) \frac{\mathbf{I}+\mathbf{W}}{2} & -\left(1-\frac{1}{\alpha}\right) \frac{\mathbf{I}+\mathbf{W}}{2} \\
\mathbf{I} & \mathbf{0}
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}^{k} \\
\mathbf{x}^{k-1}
\end{array}\right]
$$

- Let $\mathbf{I}+\mathbf{W}=\mathbf{U} \Sigma \mathbf{U}^{\top}$.

$$
\left[\begin{array}{c}
\mathbf{U}^{\top} \mathbf{x}^{k+1} \\
\mathbf{U}^{\top} \mathbf{x}^{k}
\end{array}\right]=\left[\begin{array}{cc}
\left(2-\frac{1}{\alpha}\right) \frac{\Sigma}{2} & -\left(1-\frac{1}{\alpha}\right) \frac{\Sigma}{2} \\
\mathbf{I} & \mathbf{0}
\end{array}\right]\left[\begin{array}{c}
\mathbf{U}^{\top} \mathbf{x}^{k} \\
\mathbf{U}^{\top} \mathbf{x}^{k-1}
\end{array}\right]
$$

- Therefore, one sufficient condition is $-5 / 3<\lambda(\mathbf{W}) \leq 1$ and $1 / \alpha<2$.

conditions of NIDS for general smooth functions

NIDS (with $\alpha \beta=2$):

$$
\mathbf{x}^{k+1}=\frac{\mathbf{I}+\mathbf{W}}{2}\left(2 \mathbf{x}^{k}-\mathbf{x}^{k-1}-\frac{1}{\alpha}\left(\nabla f\left(\mathbf{x}^{k}\right)-\nabla f\left(\mathbf{x}^{k-1}\right)\right)\right.
$$

conditions of NIDS for general smooth functions

NIDS (with $\alpha \beta=2$):

$$
\mathbf{x}^{k+1}=\frac{\mathbf{I}+\mathbf{W}}{2}\left(2 \mathbf{x}^{k}-\mathbf{x}^{k-1}-\frac{1}{\alpha}\left(\nabla f\left(\mathbf{x}^{k}\right)-\nabla f\left(\mathbf{x}^{k-1}\right)\right)\right.
$$

Initial condition $(k=0,1)$:

$$
\mathbf{x}^{1}=\mathbf{x}^{0}-\frac{1}{\alpha} \nabla f\left(\mathbf{x}^{0}\right) .
$$

conditions of NIDS for general smooth functions

NIDS (with $\alpha \beta=2$):

$$
\mathbf{x}^{k+1}=\frac{\mathbf{I}+\mathbf{W}}{2}\left(2 \mathbf{x}^{k}-\mathbf{x}^{k-1}-\frac{1}{\alpha}\left(\nabla f\left(\mathbf{x}^{k}\right)-\nabla f\left(\mathbf{x}^{k-1}\right)\right)\right.
$$

Initial condition $(k=0,1)$:

$$
\mathbf{x}^{1}=\mathbf{x}^{0}-\frac{1}{\alpha} \nabla f\left(\mathbf{x}^{0}\right) .
$$

Convergence condition (Li-Yan '17):

$$
\begin{aligned}
-5 / 3 & <\lambda(\mathbf{W}) \leq 1 \\
1 / \alpha & <2 / L
\end{aligned}
$$

conditions of NIDS for general smooth functions

NIDS (with $\alpha \beta=2$):

$$
\mathbf{x}^{k+1}=\frac{\mathbf{I}+\mathbf{W}}{2}\left(2 \mathbf{x}^{k}-\mathbf{x}^{k-1}-\frac{1}{\alpha}\left(\nabla f\left(\mathbf{x}^{k}\right)-\nabla f\left(\mathbf{x}^{k-1}\right)\right)\right.
$$

Initial condition $(k=0,1)$:

$$
\mathbf{x}^{1}=\mathbf{x}^{0}-\frac{1}{\alpha} \nabla f\left(\mathbf{x}^{0}\right) .
$$

Convergence condition (Li-Yan '17):

$$
\begin{aligned}
-5 / 3 & <\lambda(\mathbf{W}) \leq 1 \\
1 / \alpha & <2 / L
\end{aligned}
$$

Linear convergence condition:

- $f(\mathbf{x})$ is strongly convex and $-1<\lambda(\mathbf{W}) \leq 1$ (Li-Shi-Yan '17):

$$
O\left(\max \left(1-\frac{\mu}{L}, 1-\frac{1-\lambda_{2}(\mathbf{W})}{1-\lambda_{n}(\mathbf{W})}\right)\right)
$$

NIDS vs EXTRA

EXTRA

$$
\mathbf{x}^{k+1}=\frac{\mathbf{I}+\mathbf{W}}{2}\left(2 \mathbf{x}^{k}-\mathbf{x}^{k-1}\right)-\frac{1}{\alpha}\left(\nabla f\left(\mathbf{x}^{k}\right)-\nabla f\left(\mathbf{x}^{k-1}\right)\right.
$$

NIDS:

$$
\mathbf{x}^{k+1}=\frac{\mathbf{I}+\mathbf{W}}{2}\left(2 \mathbf{x}^{k}-\mathbf{x}^{k-1}-\frac{1}{\alpha}\left(\nabla f\left(\mathbf{x}^{k}\right)-\nabla f\left(\mathbf{x}^{k-1}\right)\right)\right.
$$

NIDS vs EXTRA

EXTRA

$$
\mathbf{x}^{k+1}=\frac{\mathbf{I}+\mathbf{W}}{2}\left(2 \mathbf{x}^{k}-\mathbf{x}^{k-1}\right)-\frac{1}{\alpha}\left(\nabla f\left(\mathbf{x}^{k}\right)-\nabla f\left(\mathbf{x}^{k-1}\right)\right.
$$

NIDS:

$$
\mathbf{x}^{k+1}=\frac{\mathbf{I}+\mathbf{W}}{2}\left(2 \mathbf{x}^{k}-\mathbf{x}^{k-1}-\frac{1}{\alpha}\left(\nabla f\left(\mathbf{x}^{k}\right)-\nabla f\left(\mathbf{x}^{k-1}\right)\right)\right.
$$

- The difference is in the data to be communicated.

NIDS vs EXTRA

EXTRA

$$
\mathbf{x}^{k+1}=\frac{\mathbf{I}+\mathbf{W}}{2}\left(2 \mathbf{x}^{k}-\mathbf{x}^{k-1}\right)-\frac{1}{\alpha}\left(\nabla f\left(\mathbf{x}^{k}\right)-\nabla f\left(\mathbf{x}^{k-1}\right)\right.
$$

NIDS:

$$
\mathbf{x}^{k+1}=\frac{\mathbf{I}+\mathbf{W}}{2}\left(2 \mathbf{x}^{k}-\mathbf{x}^{k-1}-\frac{1}{\alpha}\left(\nabla f\left(\mathbf{x}^{k}\right)-\nabla f\left(\mathbf{x}^{k-1}\right)\right)\right.
$$

- The difference is in the data to be communicated.
- But NIDS has a larger range for parameters than EXTRA.

NIDS vs EXTRA

EXTRA

$$
\mathbf{x}^{k+1}=\frac{\mathbf{I}+\mathbf{W}}{2}\left(2 \mathbf{x}^{k}-\mathbf{x}^{k-1}\right)-\frac{1}{\alpha}\left(\nabla f\left(\mathbf{x}^{k}\right)-\nabla f\left(\mathbf{x}^{k-1}\right)\right.
$$

NIDS:

$$
\mathbf{x}^{k+1}=\frac{\mathbf{I}+\mathbf{W}}{2}\left(2 \mathbf{x}^{k}-\mathbf{x}^{k-1}-\frac{1}{\alpha}\left(\nabla f\left(\mathbf{x}^{k}\right)-\nabla f\left(\mathbf{x}^{k-1}\right)\right)\right.
$$

- The difference is in the data to be communicated.
- But NIDS has a larger range for parameters than EXTRA.
- NIDS is faster than EXTRA.

advantages of NIDS

NIDS:

$$
\mathbf{x}^{k+1}=\frac{\mathbf{I}+\mathbf{W}}{2}\left(2 \mathbf{x}^{k}-\mathbf{x}^{k-1}-\frac{1}{\alpha}\left(\nabla f\left(\mathbf{x}^{k}\right)-\nabla f\left(\mathbf{x}^{k-1}\right)\right)\right.
$$

advantages of NIDS

NIDS:

$$
\mathbf{x}^{k+1}=\frac{\mathbf{I}+\mathbf{W}}{2}\left(2 \mathbf{x}^{k}-\mathbf{x}^{k-1}-\frac{1}{\alpha}\left(\nabla f\left(\mathbf{x}^{k}\right)-\nabla f\left(\mathbf{x}^{k-1}\right)\right)\right.
$$

- The stepsize is large and does not depend on the network topology.

$$
\frac{1}{\alpha}<\frac{2}{L}
$$

advantages of NIDS

NIDS:

$$
\mathbf{x}^{k+1}=\frac{\mathbf{I}+\mathbf{W}}{2}\left(2 \mathbf{x}^{k}-\mathbf{x}^{k-1}-\frac{1}{\alpha}\left(\nabla f\left(\mathbf{x}^{k}\right)-\nabla f\left(\mathbf{x}^{k-1}\right)\right)\right.
$$

- The stepsize is large and does not depend on the network topology.

$$
\frac{1}{\alpha}<\frac{2}{L}
$$

- Individual stepsizes can be included.

$$
\frac{1}{\alpha_{i}}<\frac{2}{L_{i}} .
$$

advantages of NIDS

NIDS:

$$
\mathbf{x}^{k+1}=\frac{\mathbf{I}+\mathbf{W}}{2}\left(2 \mathbf{x}^{k}-\mathbf{x}^{k-1}-\frac{1}{\alpha}\left(\nabla f\left(\mathbf{x}^{k}\right)-\nabla f\left(\mathbf{x}^{k-1}\right)\right)\right.
$$

- The stepsize is large and does not depend on the network topology.

$$
\frac{1}{\alpha}<\frac{2}{L}
$$

- Individual stepsizes can be included.

$$
\frac{1}{\alpha_{i}}<\frac{2}{L_{i}}
$$

- The linear convergence rate from the functions and the network are separated.

$$
O\left(\max \left(1-\frac{\mu}{L}, 1-\frac{1-\lambda_{2}(\mathbf{W})}{1-\lambda_{n}(\mathbf{W})}\right)\right) .
$$

It matches the results for gradient descent and decentralized averaging without acceleration.

D ${ }^{2}$: stochastic NIDS (Huang et al. '18)

NIDS:

$$
\mathbf{x}^{k+1}=\frac{\mathbf{I}+\mathbf{W}}{2}\left(2 \mathbf{x}^{k}-\mathbf{x}^{k-1}-\frac{1}{\alpha}\left(\nabla f\left(\mathbf{x}^{k}\right)-\nabla f\left(\mathbf{x}^{k-1}\right)\right)\right.
$$

D^{2} : stochastic NIDS (Huang et al. '18)

NIDS:

$$
\mathbf{x}^{k+1}=\frac{\mathbf{I}+\mathbf{W}}{2}\left(2 \mathbf{x}^{k}-\mathbf{x}^{k-1}-\frac{1}{\alpha}\left(\nabla f\left(\mathbf{x}^{k}\right)-\nabla f\left(\mathbf{x}^{k-1}\right)\right)\right.
$$

NIDS-stochastic (D^{2} : Decentralized Training over Decentralized Data):

$$
\mathbf{x}^{k+1}=\frac{\mathbf{I}+\mathbf{W}}{2}\left(2 \mathbf{x}^{k}-\mathbf{x}^{k-1}-\frac{1}{\alpha}\left(\nabla f\left(\mathbf{x}^{k}, \xi_{k}\right)-\nabla f\left(\mathbf{x}^{k-1}, \xi_{k-1}\right)\right)\right.
$$

- $\nabla f\left(\mathbf{x}^{k}, \xi_{k}\right)$ is a stochastic gradient by sampling ξ_{t} from distribution \mathcal{D}.

D^{2} : stochastic NIDS (Huang et al. '18)

NIDS:

$$
\mathbf{x}^{k+1}=\frac{\mathbf{I}+\mathbf{W}}{2}\left(2 \mathbf{x}^{k}-\mathbf{x}^{k-1}-\frac{1}{\alpha}\left(\nabla f\left(\mathbf{x}^{k}\right)-\nabla f\left(\mathbf{x}^{k-1}\right)\right)\right.
$$

NIDS-stochastic (D^{2} : Decentralized Training over Decentralized Data):

$$
\mathbf{x}^{k+1}=\frac{\mathbf{I}+\mathbf{W}}{2}\left(2 \mathbf{x}^{k}-\mathbf{x}^{k-1}-\frac{1}{\alpha}\left(\nabla f\left(\mathbf{x}^{k}, \xi_{k}\right)-\nabla f\left(\mathbf{x}^{k-1}, \xi_{k-1}\right)\right)\right.
$$

- $\nabla f\left(\mathbf{x}^{k}, \xi_{k}\right)$ is a stochastic gradient by sampling ξ_{t} from distribution \mathcal{D}.
- $\mathbb{E}_{\xi \sim \mathcal{D}} \nabla f(\mathbf{x} ; \xi)=\nabla f(\mathbf{x}), \quad \forall \mathbf{x}$.

D^{2} : stochastic NIDS (Huang et al. '18)

NIDS:

$$
\mathbf{x}^{k+1}=\frac{\mathbf{I}+\mathbf{W}}{2}\left(2 \mathbf{x}^{k}-\mathbf{x}^{k-1}-\frac{1}{\alpha}\left(\nabla f\left(\mathbf{x}^{k}\right)-\nabla f\left(\mathbf{x}^{k-1}\right)\right)\right.
$$

NIDS-stochastic (D^{2} : Decentralized Training over Decentralized Data):

$$
\mathbf{x}^{k+1}=\frac{\mathbf{I}+\mathbf{W}}{2}\left(2 \mathbf{x}^{k}-\mathbf{x}^{k-1}-\frac{1}{\alpha}\left(\nabla f\left(\mathbf{x}^{k}, \xi_{k}\right)-\nabla f\left(\mathbf{x}^{k-1}, \xi_{k-1}\right)\right)\right.
$$

- $\nabla f\left(\mathbf{x}^{k}, \xi_{k}\right)$ is a stochastic gradient by sampling ξ_{t} from distribution \mathcal{D}.
- $\mathbb{E}_{\xi \sim \mathcal{D}} \nabla f(\mathbf{x} ; \xi)=\nabla f(\mathbf{x}), \quad \forall \mathbf{x}$.
- $\mathbb{E}_{\xi \sim \mathcal{D}}\|\nabla f(\mathbf{x} ; \xi)-\nabla f(\mathbf{x})\|^{2} \leqslant \sigma^{2}, \quad \forall \mathbf{x}$.

D^{2} : stochastic NIDS (Huang et al. '18)

NIDS:

$$
\mathbf{x}^{k+1}=\frac{\mathbf{I}+\mathbf{W}}{2}\left(2 \mathbf{x}^{k}-\mathbf{x}^{k-1}-\frac{1}{\alpha}\left(\nabla f\left(\mathbf{x}^{k}\right)-\nabla f\left(\mathbf{x}^{k-1}\right)\right)\right.
$$

NIDS-stochastic (D^{2} : Decentralized Training over Decentralized Data):

$$
\mathbf{x}^{k+1}=\frac{\mathbf{I}+\mathbf{W}}{2}\left(2 \mathbf{x}^{k}-\mathbf{x}^{k-1}-\frac{1}{\alpha}\left(\nabla f\left(\mathbf{x}^{k}, \xi_{k}\right)-\nabla f\left(\mathbf{x}^{k-1}, \xi_{k-1}\right)\right)\right.
$$

- $\nabla f\left(\mathbf{x}^{k}, \xi_{k}\right)$ is a stochastic gradient by sampling ξ_{t} from distribution \mathcal{D}.
- $\mathbb{E}_{\xi \sim \mathcal{D}} \nabla f(\mathbf{x} ; \xi)=\nabla f(\mathbf{x}), \quad \forall \mathbf{x}$.
- $\mathbb{E}_{\xi \sim \mathcal{D}}\|\nabla f(\mathbf{x} ; \xi)-\nabla f(\mathbf{x})\|^{2} \leqslant \sigma^{2}, \quad \forall \mathbf{x}$.
- Convergence result: if the stepsize is small enough (in the order of $\left.(c+\sqrt{T / n})^{-1}\right)$, the convergence rate is

$$
O\left(\frac{\sigma}{\sqrt{n T}}+\frac{1}{T}\right)
$$

numerical experiments

compared algorithms

- NIDS
- EXTRA/PG-EXTRA
- DIGing-ATC (Nedic et al. '16):

$$
\begin{aligned}
& \mathbf{x}^{k+1}=\mathbf{W}\left(\mathbf{x}^{k}-\alpha \mathbf{y}^{k}\right) \\
& \mathbf{y}^{k+1}=\mathbf{W}\left(\mathbf{y}^{k}+\nabla f\left(\mathbf{x}^{k+1}\right)-\nabla f\left(\mathbf{x}^{k}\right)\right) .
\end{aligned}
$$

- accelerated distributed Nesterov gradient descent (Acc-DNGD-SC in (Qu-Li '17)
- dual friendly optimal algorithm (OA) for distributed optimization (Uribe et al. '17).

strongly convex: same stepsize

strongly convex: same stepsize

strongly convex: adaptive stepsize

linear convergence rate bottleneck

linear convergence rate bottleneck

nonsmooth functions

stochastic case: shuffled

stochastic case: unshuffled

(a) TransferLearning

(b) LENET

conclusion and open questions

conclusion

conclusion and open questions

conclusion

- optimal bounds for EXTRA/PG-EXTRA

conclusion and open questions

conclusion

- optimal bounds for EXTRA/PG-EXTRA
- new algorithm NIDS

conclusion and open questions

conclusion

- optimal bounds for EXTRA/PG-EXTRA
- new algorithm NIDS
open questions

conclusion and open questions

conclusion

- optimal bounds for EXTRA/PG-EXTRA
- new algorithm NIDS
open questions
- network construction

conclusion and open questions

conclusion

- optimal bounds for EXTRA/PG-EXTRA
- new algorithm NIDS
open questions
- network construction
- preconditioning

conclusion and open questions

conclusion

- optimal bounds for EXTRA/PG-EXTRA
- new algorithm NIDS
open questions
- network construction
- preconditioning
- acceleration?

conclusion and open questions

conclusion

- optimal bounds for EXTRA/PG-EXTRA
- new algorithm NIDS
open questions
- network construction
- preconditioning
- acceleration?
- directed network?

conclusion and open questions

conclusion

- optimal bounds for EXTRA/PG-EXTRA
- new algorithm NIDS
open questions
- network construction
- preconditioning
- acceleration?
- directed network?
- dynamical network?

conclusion and open questions

conclusion

- optimal bounds for EXTRA/PG-EXTRA
- new algorithm NIDS
open questions
- network construction
- preconditioning
- acceleration?
- directed network?
- dynamical network?
- asynchronous?

Paper 1 Z. Li, W. Shi and M. Yan, A decentralized proximal-gradient method with network independent step-sizes and separated convergence rates, arXiv:1704.07807

Code https://github.com/mingyan08/NIDS
Paper $2 \mathrm{Z} . \mathrm{Li}$ and M. Yan, A primal-dual algorithm with optimal stepsizes and its application in decentralized consensus optimization, arXiv:1711.06785

Paper 3 H. Tang, X. Lian, M. Yan, C. Zhang, and J. Liu, D²: decentralized training over decentralized data, ICML 2018, 4848-4856. http://proceedings.mlr.press/v80/tang18a.html

Thank You!

[^0]: ${ }^{1}$ Ren, Wei, Randal W. Beard, and Ella M. Atkins. "Information consensus in multivehicle cooperative control." IEEE Control Systems 27.2 (2007): 71-82.

[^1]: ${ }^{2}$ Kekatos, Vassilis, and Georgios B. Giannakis. "Distributed robust power system state estimation." IEEE Transactions on Power Systems 28.2 (2013): 1617-1626.

[^2]: ${ }^{3}$ Wai, Hoi-To, Tsung-Hui Chang, and Anna Scaglione. "A consensus-based decentralized algorithm for non-convex optimization with application to dictionary learning." Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International Conference on. IEEE, 2015.

[^3]: ${ }^{4}$ Ren, Wei, Randal W. Beard, and Ella M. Atkins. "Information consensus in multivehicle cooperative control." IEEE Control Systems 27.2 (2007): 71-82.

